段德稳,副教授。2012年获重庆大学博士学位,后曾在德国马普生物物理化学所工作七年余。主要研究方向为光纤传感,钻石氮-空位量子传感。发表SCI检索论文19篇(其中第一作者或通信作者10篇),被他引1600余次。在德国期间,利用微反射镜将钻石氮-空位荧光收集效率提高了数十倍,引起数家相关公司兴趣(Appl. Phys. Lett. 113(4), 041107 (2018));将基于光纤的钻石氮-空位量子传感空间分辨率提高到了 10 微米以下 (Opt. Express 27, 6734-6745 (2019),曾进入该杂志仪器类高下载榜),该技术被论文第二作者,现南京邮电大学杜关祥教授用于芯片表面微波电磁场响应检测并进行产业化。
教育及工作经历:
(1) 2020.8-至今 BETVLCTOR伟德唯一官网,副教授
(2) 2015.10-2019.12 Max Planck Institute for Biophysical Chemistry, Staff scientist
(3) 2012.10-2015.9 Max Planck Institute for Biophysical Chemistry, Post doc
(4) 2008.9-2012.6 重庆大学, 光学工程,博士
(5) 2005.9-2008.6 重庆大学, 光学工程,硕士
(6) 2001.8-2005.7 西安电子科技大学, 通信工程,学士
项目经历:
(1) 重庆市“博士直通车”项目 基于光纤和钻石氮空位的量子磁场扫描显微镜研究,sl202100000172,10万元, 2022-01 至 2023-12主持;
(2) 伟德BETVLCTOR1946始于英国博士启动项目, 光纤量子高精密传感研究,20万元, 2022-01 至 2023-12主持;
(3) German physical society, nanoscale microscopy and molecular physiology,
precision sensing of biomagnetic fields, 2015-01 至 2019-12,40 万欧元, 主研;
(4) Max plank society, young investigator grant, fiber magnetometer, 2012-10 至 2014-12, 12 万欧元,主研;
(5) 重庆大学研究生创新基金,校级研究生创新基金重点项目,光纤干涉式高温传感器的基础应用研究, CDJXS11122224, 2010-12 至 2012-05, 3 万元,主持;
获奖情况:
(1) 2014年 重庆市优秀博士论文
(2) 2012年 全国光学工程博士论坛优秀论文二等奖
(3) 2010年 重庆大学光学工程研究论文奖
发表论文:
[1] Duan, D.*, Kavatamane, V. K., Arumugam, S. R., Tzeng, Y.-K., Chang, H.-C. & Balasubramanian, G. (2020). Tapered ultra-high numerical aperture optical fiber tip for nitrogen vacancy ensembles based endoscope in a fluidic environment. Applied Physics Letters, 116(11), 113701. (兼通信作者) doi:10.1063/1.5140785
[2] Duan, D.*, Kavatamane, V. K., Arumugam, S. R., Rahane, G., Du, G.-X., Tzeng, Y.-K., Chang, H.-C.& Balasubramanian, G.*. (2019). Laser-induced heating in a high-density ensemble of nitrogen-vacancy centers in diamond and its effects on quantum sensing. Optics Letters, 44(11), 2851–2854. (兼共同通信作者) doi:10.1364/OL.44.0028513
[3] Duan,D.*, Du, G.-x., Kavatamane, V. K., Arumugam, S. R., Rahane, G., Tzeng, Y.-K., Chang, H.-C. & Balasubramanian, G. (2019). Efficient nitrogen-vacancy centers’ fluorescence excitation and collection from micrometer-sized diamond by a tapered optical fiber in endoscope-type configuration. Optics Express, 27(5), 6734–6745. (兼通信作者) doi:10.1364/OE.27.006734
[4] Duan, D.*, Kavatamane, V. K., Arumugam, S. R., Rahane, G., Tzeng, Y.-K., Chang, H.-C., Sumiya, H., Onoda, S., Isoya, J. & Balasubramanian, G.*. (2018). Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror. Applied Physics Letters, 113(4), 041107. (兼共同通信作者) doi:10.1063/1.5037807
[5] Duan, D.*, Rao, Y.-j. & Zhu, T. (2012). High sensitivity gas refractometer based on all-fiber open-cavity fabry–perot interferometer formed by large lateral offset splicing. J. Opt. Soc. Am. B, 29(5), 912–915. (兼通信作者) doi:10.1364/JOSAB.29.0009126
[6] Duan D.W., Rao, Y.-j*, Hou, Y.-S. & Zhu, T. (2012). Microbubble based fiber-optic fabry–perot interferometer formed by fusion splicing single-mode fibers for strain measurement. Appl. Opt. 51(8), 1033–1036. doi:10.1364/AO.51.0010337
[7] Duan, D.W.*, Rao, Y.-j*, Xu, L.-C., Zhu, T., Wu, D. & Yao, J. (2011). In-fiber mach–zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity. Sensors and Actuators B: Chemical, 160(1), 1198–1202. (兼共同通信作者) doi:10.1016/j.snb.2011.09.0488
[8] Duan,D.W., Rao, Y.-j*, Xu, L.-C., Zhu, T., Deng, M., Wu, D. & Yao, J. (2011). In-fiber fabry–perot and mach–zehnder interferometers based on hollow optical fiber fabricated by arc fusion splicing with small lateral offsets. Optics Communications, 284(22), 5311–5314. doi:10.1016/j.optcom.2011.07.0529
[9] Duan, D.W.*, Rao, Y., Wen, W., Yao, J., Wu, D., Xu, L. & Zhu, T. (2011). In-line all-fibre fabry-pérot interferometer high temperature sensor formed by large lateral offset splicing. Electronics Letters, 47, 401–403(2). (兼通信作者) doi:10.1049/el.2010.7236
[10] Rao, Y.-J., Duan, D.W.*, Fan, Y.-E., Ke, T. & Xu, M. (2010). High-temperature annealing behaviors of co2 laser pulse-induced long-period fiber grating in a photonic crystal fiber. J. Lightwave Technol. 28(10), 1530–1535. (通信作者) doi:10.1109/jlt.2010.2047376